Deleting Edges
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 263 Accepted Submission(s): 85 Problem Description
Little Q is crazy about graph theory, and now he creates a game about graphs and trees. There is a bi-directional graph with n nodes, labeled from 0 to n−1. Every edge has its length, which is a positive integer ranged from 1 to 9. Now, Little Q wants to delete some edges (or delete nothing) in the graph to get a new graph, which satisfies the following requirements: (1) The new graph is a tree with n−1 edges. (2) For every vertice v(0<v<n), the distance between 0 and v on the tree is equal to the length of shortest path from 0 to v in the original graph. Little Q wonders the number of ways to delete edges to get such a satisfied graph. If there exists an edge between two nodes i and j, while in another graph there isn't such edge, then we regard the two graphs different. Since the answer may be very large, please print the answer modulo 109+7.
Input
The input contains several test cases, no more than 10 test cases. In each test case, the first line contains an integer n(1≤n≤50), denoting the number of nodes in the graph. In the following n lines, every line contains a string with n characters. These strings describes the adjacency matrix of the graph. Suppose the j-th number of the i-th line is c(0≤c≤9), if c is a positive integer, there is an edge between i and j with length of c, if c=0, then there isn't any edge between i and j. The input data ensure that the i-th number of the i-th line is always 0, and the j-th number of the i-th line is always equal to the i-th number of the j-th line.
Output
For each test case, print a single line containing a single integer, denoting the answer modulo 109+7.
Sample Input
2 01 10 4 0123 1012 2101 3210
Sample Output
1 6
Source
题意:
n个点,n*2-n条边,删除掉只剩下n-1条边,满住剩下的每个点在原图中都是最短路的存在。
分析:
dij队列优化需要vis,可以避免重复入队的情况,但是不加vis也不会无尽循环下去。
来自某个博客其他人的解法,其实也不需要跑完全图。
说入度乘积我更倾向于说成每个点走法的乘积。(5.15重温这句话发现这句话还是有问题的,到三点的还有一种画法)
dij算法就是求原点到各个点的最短路,也很贴合这道题的性质。那么不同走法之间会有影响吗?只有两个独立事件同时发生没有影响才能相乘。(有问题)
结果是没有影响。原题中说只要存在任意一条不同的边就是不同的图。
dij最短路的原理就是通过不同路来松弛。每种走法的组合一定可以存在一条异边。第三个点也是建立在前面点基础上通过扩展而来。
因为n为50,所以随便哪个最短路算法都能过吧:
正插邻接表加队列的确比反插好写多了。。。
#include一开始超时的,不知道在哪里:#include #include #include #include #define mod 1000000007using namespace std;typedef long long ll;const int maxn = 100+10;const int INF = 0x3f3f3f3f;char ch[60][60];int cnt[maxn];struct node{ int x,d; node(){} node(int a,int b){x=a;d=b;} bool operator < (const node & a) const { return d > a.d; }};vector eg[maxn];int dis[maxn];void Dijkstra(int s){ dis[s]=0; //用优先队列优化 priority_queue q; q.push(node(s,dis[s])); while(!q.empty()) { node x=q.top();q.pop(); //最后一个点就可以跳出了 if(x.x==n-1) break; for(int i=0;i x.d+y.d) { cnt[y.x] = 1; dis[y.x]=x.d+y.d; q.push(node(y.x,dis[y.x])); } else if(dis[y.x]==x.d+y.d) { cnt[y.x]++; } } }}int main(){// freopen("in.txt","r",stdin); int n; while(~scanf("%d",&n)) { for(int i=0;i<=n;i++) dis[i]=INF; memset(cnt,0,sizeof(cnt)); cnt[0]=1; for(int i=0;i<=n;i++) eg[i].clear(); for(int i=0;i
反正以后就用vector写了。。。。
#include#include #include #include #include #include #include #include #include